U.S. Department of Energy Office of Fossil Energy

Hydrogen Production from Natural Gas
June 2, 2003
Hydrogen Coordination Meeting

Arthur Hartstein
Program Manager
Natural Gas and Oil Processing/Hydrogen

Introduction

- Natural gas is currently the lowest cost alternative to produce hydrogen
- Natural gas provides 95% of the hydrogen used to supplement refinery and chemical industry needs
- Steam methane reforming (SMR), the most widely used method to produce hydrogen, is near its theoretical limits

Program Goal and Benefits

 Goal: Reduce the cost of producing hydrogen from natural gas by 25 percent

Benefits:

- Provide the earliest transitional source of hydrogen for the FreedomCAR program and the hydrogen economy
- Provide near- and midterm energy security and environmental benefits

History of the FE Hydrogen from Natural Gas Program

Past Present Future

Syngas Emphasis on H2 Production

- Platform Technology
- Membranes to separate
 O₂ from air and to
 partially combust CH₄
- Produces CO and H₂

Gas-to-Liquids (GTL) Process Overview

About 40% of Capital Cost is Associated With the Separation of Oxygen from Air

Membrane Technology to Eliminate Oxygen Plant

Ion Transport Membrane (ITM) Reactor – Air Products and Chemicals, Inc.

Autothermal Reforming (ATR) – Praxair Inc.

History of the FE Hydrogen from Natural Gas Program

Past

Present

Future

Syngas **Production**

Emphasis on H₂ Production

- Platform Technology
- Membranes to separate O₂ from air and to partially combust CH₄
- Produces CO and H₂

Revolutionary Platform Technology for Syngas Generation

- Ion Transport Membranes (ITM)
 - Non-porous, multicomponent ceramic membranes
 - High oxygen flux
 - High selectivity for oxygen
- Platform technology leading to numerous applications
 - Hydrogen
 - Transportation fuels
 - Chemicals

$$CH_4 + \frac{1}{2}O_2 \xrightarrow{\text{catalyst}} CO + 2H_2$$

Operating Temperature 750°C to 1000°C Operating Pressure 450 PSIA

History of the FE Hydrogen from Natural Gas Program

Past Present Future

Syngas Emphasis on H2 Production

- Platform Technology
- Membranes to separate
 O₂ from air and to
 partially combust CH₄
- Produces CO and H₂

Hydrogen from Natural Gas Program Major Technical Milestones

Barriers to Hydrogen Production from Natural Gas

- Steam reforming and pressure swing adsorption are mature technologies – there is limited potential for cost improvements
- Small-scale hydrogen production from natural gas for onsite applications will reduce distribution infrastructure; however, current technology has high cost because it lacks economy of scale
- Carbon dioxide capture and sequestration is expensive
- Demonstrations of technologies are needed

Technology Gaps for Hydrogen Production from Natural Gas

- Novel hydrogen production that combines air separation and partial oxidation in one step [ion transport membrane (ITM) syngas reactor]
- Advanced hydrogen membrane separations
- Concentration and capture of carbon dioxide
- Demonstration of advanced technology concepts will enable commercialization

Mission

 Produce and deliver affordable H₂ with reduced or near-zero emissions

 Provide earliest transitional source of H₂ for FreedomCar

Approach

Industry solicitation for new H₂ production technologies

Partnership with
National Laboratories
for fundamental
research

Limited solicitation for on-going projects in other program areas

In-house R&D at the National Energy
Technology
Laboratory (NETL)

Four UCF Projects in Oil and Gas Funding Table

Participant	Project	Funding (\$millions)	
		FY03	FY04*
Praxair Inc.	NG to Syngas to F-T	2.5	TBD
Conoco	NG to Syngas to F-T	0	TBD
ICRC/Syntroleum	NG to Syngas to F-T	7.0	TBD
Air Products and Chemicals, Inc.	NG to Syngas	4.5	TBD

^{*} FY04 funding to be determined (TBD). Not part of Hydrogen Initiative.

FE Hydrogen from Natural Gas Program Budget (\$thousands)

	FY04	FY05
	DOE Request	DOE Request
Hydrogen from Natural Gas	\$6.555 million	TBD

The FE Hydrogen from Natural Gas Program funding in FY03 was zero (program did not exist). The FY05 request is to be determined.

Projects/Activities

- Air Products and Chemicals, Inc.
 - Eight-year, three-phase,
 \$90 million
 government/industry-funded project
 - lon Transport
 Membrane (ITM)
 synthesis gas reactor
 technology

- Praxair, Inc.
 - Four-year, \$53 million government/industryfunded project
 - Oxygen Transport
 Membrane (OTM)
 synthesis gas reactor
 technology

Combines air separation and partial oxidation in one step

Reduced capital and operating costs

Lower emissions

Applicable for both large and small-scale operations

Projects/Activities (continued)

- Conoco Inc.
 - Five-year, \$16.9 million government/industryfunded project
 - Life-cycle analyses and market assessment of synthesis gas-derived liquid fuels

ICRC/Syntroleum

- Three and a half-year, \$38.3 million government/industryfunded project
- Design and construct a modular, small footprint plant to produce synthesis gas-derived liquid fuels

Reduced capital and operating costs

Lower emissions

Reduced capital and operating costs

Lower emissions

Mobile and easily modifiable to take advantage of diverse feedstocks

Outcomes

- 2011: Low-cost, small-footprint plant for H₂ demonstrated
- 2013: Modules to reduce cost of H₂ (and syngas) production from natural gas by 25% available
- 2015: Fueling park commercial production of H₂ from natural gas with 25% reduction in H₂ cost demonstrated
- 2015: Hydrogen from Natural Gas RD&D Program complete

